skip to main content


Search for: All records

Creators/Authors contains: "Winebarger, Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A challenge in characterizing active region (AR) coronal heating is in separating transient (bursty) loop heating from the diffuse background (steady) heating. We present a method of quantifying coronal heating’s bursty and steady components in ARs, applying it to Fe xviii (hot 94) emission of an AR observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The maximum-, minimum-, and average-brightness values for each pixel, over a 24 hr period, yield a maximum-brightness map, a minimum-brightness map, and an average-brightness map of the AR. Running sets of such three maps come from repeating this process for each time step of running windows of 20, 16, 12, 8, 5, 3, 1, and 0.5 hr. From each running window’s set of three maps, we obtain the AR’s three corresponding luminosity light curves. We find (1) the time-averaged ratio of minimum-brightness-map luminosity to average-brightness-map luminosity increases as the time window decreases, and the time-averaged ratio of maximum-brightness-map luminosity to average-brightness-map luminosity decreases as the window decreases; (2) for the 24 hr window, the minimum-brightness map’s luminosity is 5% of the average-brightness map’s luminosity, indicating that at most 5% of the AR’s hot 94 luminosity is from heating that is steady for 24 hr; (3) this upper limit on the fraction of the hot 94 luminosity from steady heating increases to 33% for the 30 minute running window. This requires that the heating of the 4–8 MK plasma in this AR is mostly in bursts lasting less than 30 minutes: at most a third of the heating is steady for 30 minutes. 
    more » « less
  2. null (Ed.)
    The Sun has a well-known periodicity in sunspot number and magnetic field variation. The underlying cause of this 11-year cycle is not fully understood and has yet to be connected with those processes in other stellar objects. The Full-sun Ultraviolet Rocket SpecTrograph (FURST) is a sounding rocket payload being developed by Montana State University (MSU) alongside the Marshall Space Flight Center (MSFC) solar physics group. Scheduled to launch from White Sands Missile Range (WSMR) in 2022, this instrument is unique in that it will provide the connection between stellar observatories with measurements of our Sun. It will achieve this through measuring high-resolution full-disk spectral irradiance. We aim to obtain a wavelength resolution R > 10,000 in the 120 - 181 nm UltraViolet (UV) range, on par with that of the Hubble (HST) Space Telescope Imaging Spectrograph (STIS). This resolution goal will allow us to study the relatively low-temperature plasma in the chromosphere and lower corona with spectral accuracy down to 0.1 Å (a Doppler-shift of about ± 30 km/s). In addition, the Lyman Alpha (121 nm) line is known to saturate most CCD electronics. These factors illustrate the particular challenge of precise wavelength calibration for this spectral range. We are building a collimator in order to calibrate the FURST instrument under these strict spectral requirements. This paper will present the results of our simulation of the diagnostic lamp signal to be used for wavelength calibration. The simulation allows us to begin to account for photon noise, electronic readout noise, and statistical error. These in turn lead to the development of our pre- and post-launch calibration plans. Future work includes absolute radiometric and wavelength calibration with this new collimator. In addition, the ability of FURST to measure small Doppler-shifts will provide capabilities for planetary atmospheric scientists. This impact is coupled with the diverse international partnership created by the closely-knit Sounding Rocket teams around the globe. Sounding Rockets like FURST have an even broader impact, as they encourage future satellite missions under the prospect of long-term observations. 
    more » « less
  3. Abstract

    The citizen Continental-America Telescopic Eclipse (CATE) Experiment was a new type of citizen science experiment designed to capture a time sequence of white-light coronal observations during totality from 17:16 to 18:48 UT on 2017 August 21. Using identical instruments the CATE group imaged the inner corona from 1 to 2.1 RSun with 1.″43 pixels at a cadence of 2.1 s. A slow coronal mass ejection (CME) started on the SW limb of the Sun before the total eclipse began. An analysis of CATE data from 17:22 to 17:39 UT maps the spatial distribution of coronal flow velocities from about 1.2 to 2.1 RSun, and shows the CME material accelerates from about 0 to 200 km s−1across this part of the corona. This CME is observed by LASCO C2 at 3.1–13 RSun with a constant speed of 254 km s−1. The CATE and LASCO observations are not fit by either constant acceleration nor spatially uniform velocity change, and so the CME acceleration mechanism must produce variable acceleration in this region of the corona.

     
    more » « less